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ABSTRACT

Three-dimensional cell cultures such as organoids are a useful platform for biomedical
research. They can be generated from tumor cells and are embedded in an extracellular
matrix. Their differentiation and proliferation patterns are similar to their originating
in-vivo cells. This makes them valuable as a test environment for tumor drugs, especially
those that affect organoid growth. It is therefore crucial to be able to effectively analyse
organoid growth behaviour in three dimensions. This is a tedious process when done
manually, because time-series microscopy provides large datasets.

U-net is a convolutional neural network (CNN) that specialises in image segmentation.
This thesis demonstrates that U-net effectively aids in the binary separation of the
organoid from its background. These masks are then used to create a 3D model, which
proves useful for visualisation and analysis purposes.

The branching behaviour, growth patterns and volume and surface area development
were subsequently analysed. It was found that organoids show a differentiated growth
pattern and that branching events are preceded by bulging at the inception points.
Differences were found between longitudinal oriented cell structures and more branched
ones, where the latter gain in volume much more rapidly.

These insights pave the way for a more effective analysis of growth patterns which
result from drug response.
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1 Introduction

Cancer is a major cause of death worldwide, accounting for around 10 million deaths
per annum[1] and 8 million additional diagnoses [2]. In developed countries, it lies just
behind cardiovascular diseases as the leading cause of death [3]. Thus, oncology has been
a main focal point in biomedical research in recent years, and great strides have been
made to construct an efficient system to prevent, detect and treat all types of cancer.

In order to ensure this process is fast and accurate, it is essential to tailor the therapy
to the patient. The translation of scientific models from the lab to the patient’s specific
situation historically fails in a majority of cases when using traditional models of drug
testing, namely 2D cultured human tumour cell lines and rodent xenografts [4].

This is where 3D cell cultures come into play. Organoids are an example of 3D cell
cultures. They construct a more natural environment that reacts to external stimuli
in a similar manner and construct a stable and more accurate representation of in-vivo
conditions. The term "organoid” in this sense was used for the first time in 1946 [5]
to refer to a teratoma [6], but only in recent years has it gained the "three-dimensional
culture model” meaning it has today[7]. Since the development of the intestinal organoid
culture system in 2009 [8], the research field has gained even more momentum.

To be able to evaluate the effects of drug treatments, it is essential to understand the
growth patterns of single organoids. The spacial development provides information on
growth phases [9], reactions to drugs [10], and can aid in understanding the expansion
of tumors in an organism. Thus, being able to quickly represent a given organoid as a
3D model, ideally with automated tools, is crucial. Properties such as its shape, volume,
surface area and branching behaviour can be determined from three-dimensional models
quickly and with relative ease. A fast and accurate visual representation from all sides
can ideally aid patient specific treatment options.

Advancements in recent years have opened the path for high-throughput microscopy,
capturing multiple layers of 3-dimensional cell structures sequentially over time and in
high resolution. Multi-well plates, populated with a high density of organoids and imaged
over an extended time period, can provide large sets of data. This data can be used to
feed machine-learning algorithms to accomplish tasks such as image segmentation. This
assists the creation of a visual representation and thus the analysis of the organoids.

One of the recent advancements in the field of neural network-based image segmen-
tation is U-net, a fully convolutional network [11] designed for biological image segmen-
tation. It’s capable of running on household computers, can quickly be trained with
relatively few images and yields a precise segmentation. The objective here is to inves-
tigate its capacity in the realm of 3D cell cultures, in particular in conjunction with the
3D visualisation and analysis of growing PDAC (Pancreatic Ductal Adenocarcinoma)
organoids.
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2.1 3D Cell Culture

Until recently, cell cultures have been understood as the two-dimensional growth of single
cells or tissue in an artificial environment. It is also possible, however, to construct these
research environments in all three dimensions.

2.1.1 Organoids

Organoids are three-dimensional cell structures, cultivated in vitro and embedded in a
supporting matrix, such as a collagen-based one. Collagen is an important structural
protein in the extracellular matrix in our bodies and supports cell division, differentiation
and migration in the body [12]. Used in vitro, it enables the cell structures to propagate
in a similar way to in vivo conditions, paving the way for a variety of use cases.

“Here we define an organoid as an in vitro 3D cellular cluster derived ex-
clusively from primary tissue, embryonic stem cells, or induced pluripotent
stem cells, capable of self-renewal and self-organization, and exhibiting sim-
ilar organ functionality as the tissue of origin”

Fatehullah et al. (2016), [8]

Organoids prove especially useful in recreating tumour conditions in-vitro. While drug
testing on genetically engineered mouse models, for example, has significantly improved
our understanding of cellular mechanisms underlying tumorigenesis and aids the iden-
tification of cancer biomarkers, it is increasingly evident that rodents can not replicate
the histological complexity and genetic heterogeneity of human tumors. The differences
in human and animal biology, as well as the high cost and difficulty of imaging, espe-
cially in high-throughput studies, render animal models largely ineffective for targeted
therapies [13, 14]. Also, methods such as patient-derived xenograft (PDX) models (see
fig. 2.1), which implant human tumor tissue into mice for tumor-treatment testing, have
similar deficiencies [15, 16, 17]. The tumor evolution and genetic composition of PDXs
can deviate from the parental tumor substantially [18], they are expensive to develop
and require rigorous ethics approval.

These shortcomings of animal models can be met by in vitro systems. They do not
harm the organism from which they originate and are relatively cheap and reliable.
The most prevalent method is to propagate cells from patient material to create cell
monolayers in two dimensions. They are kept in a medium and cultivated so that a 2D
cell line is created, where every cell is genetically identical. This homogeneity is not an
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advantage, however, when it comes to drug research and testing, as tissue physiology
research requires a differentiated phenotype profile [16]. Also, due to the lack of cell-to-
cell and cell-to-matrix interactions, the culture is not able to mimic the cellular functions,
signalling pathways, motility and growth patterns of in vivo tissue [13]. Organoid cell
cultures pose a solution for these deficiencies.
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Figure 2.1: Comparison of cancer cell models, from [16]. Human tissue can be used to
establish two-dimensional cell lines, patient-derived xenografts (implantation
of human tissue in rodents) or organoids.

The three-dimensional structures can be expanded quickly and cryopreserved. They
consist of cells with the necessary heterogeneity and genetic adaptability for patient
specific drug-testing. They can be used in high-throughput experiments and to create
biobanks [16]. In addition, they can be cultivated over a relatively long time period,
retaining their patient- and disease-specific characteristics [19].
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Features 2D cell lines PDX models Organoids
Success rate of modeling High High Low

Ease of maintenance Easy Medium Hard
Expansion Fast Slow Fast
Retention of heterogeneity No Yes Yes
Genetic manipulation Yes No Yes
High-throughput drug screens | Yes No Yes

Cost Low High Low

Table 2.1: Overview of the advantages of the three preclinical cancer models, adapted
from [20]. Especially note the fast expansion, retention of heterogeneity and
high-throughput abilities of organoids.

Evidently, an in vitro system that so closely resembles in vivo conditions has a large
array of uses beyond the scope of tumour research. Organoids can be used to model
neurodevelopment disorders and then test drug properties. They prove useful for research
of infectious diseases, like the Zika virus, noroviruses and parasites [21], and, because of
their ability to be genetically modified (aided by technologies such as the gene scissors
CRISPR/Cas9) and keep their phenotype, they are also being used to model diseases
such as cystic fibrosis [21]. They offer an accurate environment to investigate drug
toxicity, spreading behavior, and efficacy. This potentially reduces the need for animal
testing or improves its results. Ultimately, the organoids can also be used to provide
implant solutions to patients as a tissue resource and an assessment environment [22].
A comprehensive biobank can be established in vitro that documents a collection of
cancer subtypes in a patient, for example, and provides a continuous supply of samples.
Biobanks conserve the genomic landscape of the parent tumor and have proven useful
to perform phenotype-genotype correlation analysis, functional tests and to assess drug
response [21, 23].

2018

Breast cancer PDO
Gastric cancer PDO
Lung cancer PDO
Bladder cancer PDO  Kidney cancer PDO

Ovarian cancer PDO Urothelial cancer PDO
Esophagus cancer PDO Biliary tract carcinoma PDO

2017
Liver cancer PDO
Endometrial cancer PDO

2015
Pancreatic cancer PDO

2014
Prostate cancer PDO

2019

2020
Glioblastoma PDO
2011 Neuroendocrine neoplasms PDO
Sato et al.

Colorectal cancer PDO

2009

Sato et al.

First organoid culture
estabishment

2021
Cervical cancer PDO

Figure 2.2: Recent developmemts in the field of patient-derived organoids (PDOs), with
the year when the culture was first established, from [20]
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The field of 3D cell cultures is a relatively recent one and a lot of progress has been
made since the first organoid culture establishment in 2009. Different types of cancer
have been successfully modeled according to the cell culture protocol from 2009 (see fig.
2.2). However, what is missing is a set of analysis tools to explore the full potential this
research field has to offer.

2.2 Microscopy

The microscope as a method of optical analysis of biological structures is one of the
most fundamental research instruments. A common type of microscopy in cell biology
is widefield microscopy. This is an approach where the whole object is illuminated
from the opposite side of the objective to create contrast. Usually, white light (bright-
field micropscopy) is absorbed by the cell structures and thus makes them visible in
the viewfinder. In cell imaging, widefield microscopy stands in contrast to confocal
microscopes, which are often favoured for three-dimensional material. They are well
suited for this thicker material, because instead of a diffused bright light they use a
focused laser beam. The laser beam scans over the specimen and targets a defined point
in three-dimensional space with a high intensity beam. This approach offers a higher
resolution, too. However, for high-throughput live-cell imaging, it is advantageous to
resort to the wide-field variant because it damages the organism far less. In microscopy,
there is always a trade-off between speed of imaging, resolution that can be attained, and
sensitivity, where an increase in one leads to a decrease in the other areas. To successfully
image 3D organisms in z-stacks, it is beneficial to image at the highest possible speed, and
because we are working with live, growing cells, it is important to expose the specimen
to as little high-intensity light as possible. Also, for a general morphological analysis,
it is less important to be able to capture single details at a high resoltution, so for the
purpose of imaging live PDAC organoids we will be using wide-field microscopy.
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Widefield imaging Laser scanning
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Figure 2.3: Differences in imaging of wide-field and confocal microscopes, from [24, 25].
Note the more defined beam on the confocal microscope which yields very
high-resolution images but is disadvantageous when imaging quickly and over
a long period of time.
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Figure 2.4: Advantages of each microscope type (widefield, confocal lases scanning mi-
croscope and spinning disk), from [25]. The strong points of widefield mi-
croscopy lie in its speed and sample viability (preserving the samples prop-
erties).
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2.3 Machine learning in cell biology

In recent years, with the additional processing power and increasing affordability of
powerful Graphics Processing Units (GPUs) and access to cloud-based computation,
machine-learning techniques have become widespread in nearly every field of science. In
particular, for complex tasks such as pattern recognition and various predictive purposes,
they are used in a multitude of areas across the physical sciences. The field of machine
learning is a branch of artificial intelligence (AI) and broadly describes the process of
fitting predictive models to data through a learning process akin to the way humans
recognize patterns [26].

A machine-learning based approach to image analysis has multiple advantages. Not
only is there considerably more data for 3D cell structures than for 2D, but the need
for speed in live cell cultures and thus high-throughput microscopy provides data sets
of a much larger dimension. Also, as the temporal development of organoids is essential
to understand the effects of drug treatment, for example, and the ability of time-series
microscopy opens up a new world of analysis possibilities, there is also a time component
in addition to the 3D data. Manual image analysis techniques are no longer sufficient to
deal with these large and unhandy data sets, hence the convenience of machine-learning
aided techniques in biology [27].

An algorithm can learn in different ways. While traditional machine learning tech-
niques (regression, principal component analysis, gradient boosting) and most neural
networks rely on already labeled data, there are algorithms which can also learn from
unlabeled data sets. They can input unstructured data, such as text or image material,
and automatically determine which set of features distinguish one class from another.
However, in cases where the class is already known, for example in image segmentation,
it is advantageous to work with labeled data, as it is faster and more accurate.

Neural networks are a subset of deep learning techniques that are modeled after neuron
functionality in the brain. Nodes (artificial neurons) are connected in a similar way
to synapses in biological neural networks, and structured into layers. Usually, there
is an input and output layer, with multiple hidden layers in between that perform a
transformation, as depicted in figure 3.5.
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input hidden output
layer layer layer

Figure 2.5: Layout of artificial neural networks, showing connected nodes in layers. The
connections are depicted as weighted arrows. From [28].

Each node consists of input data, weights, a bias and an output, which leads to the
input of the next node. The network can then be described as a linear combination (Z,
see eqn. 2.1) of inputs and weights that computes predicted output values. Weights
can be thought of as the ”strength” of the connection, a measure of how much effect
a certain input will have on an output. There might also be a threshold on a neuron,
letting the signal through only if it passes a certain value.

m
Z = ww; + bias (2.1)
i=1
The w; describe the weights and x; the inputs. Note the bias, which shifts the activation
function by a constant to adjust it to real-life circumstances. The output values are then
compared to the actual values (ground truth) during the training process and the loss
is taken track of in the so-called error function. The goal is to minimize this loss, so the
output of the neural network converges to the optimal solution. The network is then
trained, and the attained values can be applied to a test data set [29].

Convolutional neural networks are one step forward from these basic (feedforward)
neural networks, and are especially adept at computer vision tasks such as object recog-
nition and image classification, albeit at a higher computational cost. A typical example
is to distinguish cats and dogs. The special component of CNNs are convolutional lay-
ers, which consist of an input, a filter (kernel), and a feature map. The input data is
a 3-dimensional data set with a determined height, width and RGB value, for example.
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The filter acts as a feature detector and sweeps as a matrix (usually 3x3) over the image,
combining the input pixels with the filter in a dot product and outputting the values
in an array. The feature map is the final array once the filter has swept over the whole
image. The whole process is called convolution [30].

1|ofl1]o|1]o0 AR P o
ol1f1]o|1]1 ol1|1|*[4]5]6|—p
1({0|l1]Jo]|1]0 1101 7180
1/0j1]1]1/0 Image patch Kernel

ol1]l1lo0| 1|1 (Local receptive field) (filter)

Output

Figure 2.6: The principle of convolution, from [31]

Some important concepts for neural networks are:

e Supervised and unsupervised learning: The difference in learning lies in the
labeling of the data. The training data in supervised learning is labeled by human
hand, so that the algorithm iteratively learns and adjusts its output based on the
ground truth. Unsupervised models discover structure in the data by themselves,
and only need human intervention to validate the results. It is computationally
costlier, and often inaccurate, but less time-consuming [32].

¢ Overfitting and underfitting: These are two common causes of model inaccu-
racy. While underfit models fail to recognise patterns in the data and show that
the used model is too simple, overfit ones follow the data too closely. They both
result in the model failing to predict outcomes accurately.

Underfit Optimal Overfit
. ° o _..
Q o, @ e ® 1] e
b= e ° ., 5 o = oo g
© ® LS00 ) e o0 O © TV Y
"g? R " - °® ‘gs . . a'? r;E ¥ ‘Y
5|, o2 o 5. il o 5 'o e o
S| Ve S| I
O| & Ol » Ol »
Predictor variable Predictor variable Predictor variable

Figure 2.7: An example of underfitting and overfitting of a model, from [33]
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e Activation function: An activation function defines the output of a node and
maps it to a value, for example between -1 and 1. Often it is in form of a logarithm
or a binary step. [34]

e Forward and backward propagation: Forward propagation means moving
from input to output through the network with assigned weights. Backward prop-
agation is the process of running back through the neural network during the
training process, and while doing this, computing the gradient of the loss function
with respect to the weights of the network [35].

e Pooling: Pooling describes a downsampling method, that creates a new feature
map in a condensed resolution, reducing the spacial dimension. On one hand, it
diminishes the number of weights and also the computational cost. On the other
hand it’s a useful tool to control overfitting [36].

Rectified feature map

1

%

2|7 Pooled feature map
8|5 3.2/6.2
0|7 — 2.5/2.7
3|1

Average(3,4,1,2)=2.5

Y

—nyma

(a) Average pooling

Rectified feature map

1(4/(2 |7 Pooled feature map
2|6 8|5 6|8
e —
1 3|1 4

2
I

Max(3,4,1,2)=4

(b) Maximum pooling

Figure 2.8: Example of pooling algorithms, from [36]

e Dense layer: Layers in a neural network are called dense when each node is
connected to every node in the previous layer.

10
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o Padding allows the filter to sweep the edges of the input layer by adding extra
pixels around the image [37].

e Stride describes the amount of movement of filter over the input layer, a stride of
1 would mean it does one more pixel at a time [37].

Typically, convolution networks are used for image classification, assigning a class
label to the image. In biological image processing, it is often more useful to include
localisation, where the class label is assigned to each pixel individually. To this end, we
can introduce the so called "fully convolutional networks” (FCNs), often used for seman-
tic segmentation. Predictions are made on a pixel-by-pixel basis and with supervised
pre-training. They avoid using dense layers and only use locally connected layers (using
solely convolution, pooling and upsampling), and thus fewer less parameters and can be
used with variable image sizes. [3§]

The following section outlines the specific microscopy and data analysis methods used
for 3D cell visualisation purposes.

11
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3.1 Cell biology

The cells for growing the organoids used in the experiment were from the 9591 PDAC
cell line, by courtesy of Prof. Dr. med. Dieter Saur from the "Rechts der Isar” hospital
in Munich. Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most malignant
forms of cancer. The 5-year survival rate is around 5%, it is of aggressive nature, hard
to detect and very resistant to radio- and chemotherapy [39]. Our understanding of
the disease progression and reaction to drug treatment is limited, making it an valuable
playing field for organoid reseach [40].

The tissue was cultivated in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture
F-12 Ham (DMEM) with supplements 10% FBS (Fetal Bovine Serum) and 1% P/S
(Penicillin-Streptomycin). The medium was changed every 2-3 days when they were
under 70 % to 80 % confluency. The number of cells per well was 2 - 10° at the start of
the imaging process.

Growth phases

Current knowledge of organoid biology suggests that the growth of PDAC organoids can
be divided into four distinct development phases, characterised by distinctive patterns
of deformation, growth rate and cell migration (see fig. 3.1, from [9]).

First, in the ”onset phase”, the cells structure themselves along a main axis of elon-
gation, proliferating at an exponential rate, distributing themselves homogeneously and
reaching about 500 pm in five days. Overall, this stage can last until about day seven.
Next, the ”extension phase” is where growth along the branches happens (around day
seven to nine), from the core to the tips, at a rate of about 195um/day. The invasion
of the matrix occurs at a similar speed on all branches, and a branching event occurs
on average once every two days. The third stage, the "thickening phase”, happens after
day nine. Here the branches stop elongating and start widening. The tips get blunter
and thicken. Towards day 11-12, microlumens form through cell apoptosis and combine
to create a single seamless lumen. We can be called the "lumen formation phase”.

12
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Branch retraction
Branch extension
» Internal cell motion

P> Thickening

Lumen formation

Branching event

Figure 3.1: Development phases of PDAC organoids stained with SIRDNA, from [9]

For analysis purposes and to demonstrate the functionality of machine-learning aided
segmentation during phases of high growth, the organoids chosen were in the growth
stage from day five to eight, on the cusp of the extension phase.

3.2 Microscopy of 3D organoid cell cultures

In order to properly analyze the organoids, it is fundamental to firstly grasp the under-
lying principles of 3-D time-series microscopy. The biological structures being imaged
are in the order of up to millimeter, so they lie well within the resolving range of light
microscopes.

The one that was used to image the data sets is the LEICA Thunder Imager Live
Cell & 3D Assay inverted bright-field microscope on a DMi8 stand and a motorised
stage. The objective was the N Plan 5x/0.12 PHO, with a numerical aperture of 0.12.
The cells and the medium (see section 3.1) were kept in the two-well coverslip Ibidi
p-Slide 2 Well Ph2 in the dimension 21.6 x 23.8 x 9.3 mm?. This was connected to an
incubator, the Tokai Hit STX Stage Top Incubator, which kept the cell culture at a
constant 7' = 37.0°C, 5%CO4y and 100% humidity.

3D cell structures can be especially tedious to image, especially when the temporal
development is also important (4D microscopy). The camera images by scanning over
the two wells, taking 2048x2048px images of selected squares. It scans over all positions
once per hour, taking 101 single two-dimensional images in the z-plane per position,
each 0.5 pm apart. These layers of 2D images, which when combined show the entire
three-dimensional plane of a certain position, are called z-stacks.

Due to the growth of the organoids and also the viscosity of the medium, the z-axis
alignment of a point can change over time. It is vital that the microscopy system is not
submitted to external mechanical influences either. The cells were imaged for 8 days,
during which the organoids drifted independently in the xy-plane, but not more than
around 40 pm a day. A drift in z-direction could not be determined. The drift can be
resolved in the pre-processing process at a later stage.

13
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Because the lighting conditions across a whole position aren’t homogeneous, the gradi-
ent is sometimes quite noticeable. Although the 3D cell culture images don’t exhibit the
same discontinuities as stitched 2D images, organoids that are on the overlap region can
exhibit shading inconsistencies which complicates processing. It is therefore paramount
to leave as much space around the organoid as possible while taking its growth into
account.

The main data set used for further analysis was imaged on the July 11, 2022 and
shows the development of the PDAC organoids from day five to eight. It can be found
in appendix A. The organoids are named according to grid and imaging position on the
plates. The ones that were used in the analysis are given in fig. 3.2.

(a) A1P5 (b) A1P4

(c) A2P2 (d) D5P2

Figure 3.2: The four organoids that were used for further analysis.

14
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3.3 Data processing and analysis

In order to obtain a 3D model, the data set has to go through a number of steps (fig.
3.3). First, the imaged 2D stack in all its time points goes through a procedure of pre-
processing, where it is prepared for the segmentation, either manually or automatically
with U-net. The segmented images can then be used to create a 3D model which is the
foundation of further analysis, or can be used to visualise the organoids as a 3D print.
Through voxelization the model can be used to augment the data for further training
processes.

Organoid Z-Project algorithm 3D Projection

Microscopy Image pre-processing

2D stack { Data reduction Drift correction Cropping I 3D Print
Training Data
Voxelization Test Data 3D Model
Segmentation

Probability Density { U-Net Thresholding ’ Denoise

Figure 3.3: Image processing, from the stack of 2D images, over the pre-processing and
segmentation to the three-dimensional model.

3.3.1 Pre-processing

To prepare the data for any further processing and analysis, the data set has to be
firstly reduced and organised. The raw LIF files from the microscope of the entire well
are > 100 GB and thus not useful for processing. Once the single organoids are chosen,
cropped, and converted to the TIF format, they can be opened in a scientific image
processing program such as ImageJ.

To correct the alignment of the images stack, the plugin Stackreg [41] was used. In
most cases, the organoid is only affected by translation and a coordinate transformation
of 1 = ¥y + AZ. The Stackreg "Translation” algorithm is sufficient in these cases. If a
rotation 77 = (Z?Ifg _C(S)isnf) - Zo + AZ is involved, the "Rigid Body” algorithm does the
job. The other algorithms add more degrees of freedom and normalise the size, but in
this case the aim is to keep the original size for later analysis. For further processing, it
is necessary that the images are then cropped and the black bars on the edges removed.

15
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Z-projection

The three-dimensionality can be analysed to a certain degree directly from these pre-
processed stacks if they are flattened as a projection. Every pixel on a point in the
x-y-plane is combined with all others along its z-axis to create a two-dimensional image.
This can be done with a variety of methods, each projecting the pixels differently [42].
While this has limited functionality for the analysis of 3D cell cultures and doesn’t offer
significantly more information than single 2D images (see fig. 3.4), these methods are
being used in biomedical imaging (MRI scans, single cell organelle analysis) extensively.

o b
. B - ¥ >
(a) Average intensity (b) Median
(3
(d) Maximum intensity (e) Sum slices (f) Standard deviation

Figure 3.4: The ImageJ Z-Project function applied to organoid A1P5. Each algorithm
shows slightly different details, but don’t offer a major advantage over the
basic 2D image.

3.3.2 Image segmentation in 3D

Image segmentation describes the process in which an image is divided into semantic sub-
classes and regions of interest. In self-driving cars, this can occur through categorising
the camera output into classes such as the road, street signs, pedestrians, other cars
and so on. In biology, it’s often important to distinguish cell components, for example.
In our case, it is about removing 3-dimensional cell structures from the background.
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3 Methods

This is essential if we would like to represent the organoid as a 3D model for further
analysis. We do this, by taking the single 2D images, segmenting them individually, and
then stacking them back together. This is a substantial amount of images, for one time
point up to 100 images, and if we are looking at growth patterns over 30h, the amount
is increased to 3000 images. This is too much data to process manually which is why
automated techniques come in handy.

In order to automate this process with machine-learning methods, we must understand
the classic method first. It is usually done through some type of thresholding. For 2D
cell cultures, Edge Detection algorithms help too, but for Z-stacks the edge is less defined
and this method is prone to error. ImageJ does segmentation quite effectively already
through its auto-thresholding algorithms, and the performance is enchanced if the input
image has a high contrast. If the original contrast isn’t sufficient, it’s possible to manually
increase the contrast directly in ImageJ.

Figure 3.6 shows the auto-thresholding methods in ImageJ. A lot of algorithms are
very similar, but the best ones for further processing are those with the least noise
and the clearest defined lines. The Yen algorithm [43] (bottom picture), Shanbhag
[44] and minimum algorithms [45] (on the right side) are especially useful for organoid
segmentation.

A disadvantage of this approach is that ImageJ loads all the thresholded images into
the RAM, and as a single image can be up to 20 MB, personal computers can run out
of space very quickly for large data sets. Also, some additional processing is needed
to ensure that only the organoid itself is captured and no artifacts. Through ImagelJ’s
Remove Outliers algorithm, it is possible to specify the size of artifacts not adjacent to
the organoid and remove them. This can be done to the whole stack, but is prone to
error and will almost always destroy some part of the organoid outline in the process.

J‘jiﬂh"
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(a) Original (b) Yen thresholding (c) Remove outliers (d) Manual corrections

Figure 3.5: Semi-automatic segmentation of a frame of A1P5 using ImageJ
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Figure 3.6: Comparison of the auto-thresholding methods applied to A1P5

Manual corrections can be done with the paint brush to remove obvious outliers.
However, the process is time consuming and counterproductive to the high-throughput
principle. This is where the automated approach using machine-learning comes in.
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3.3.3 U-net: CNN-aided image segmentation

U-net is a convolutional neural network proposed and developed by Olaf Ronneberger,
Philipp Fischer and Thomas Brox at the Computer Science Department at the University
of Freiburg, Germany [11]. Its purpose is to offer a segmentation algorithm for biological
material that is precise, relatively lightweight to run and utilises less training data than
usual.

Figure 3.7: An example of a 2D image segmentation using U-net on a 2D image. The
input image (left) is segmented by the CNN (middle) and then a mask can
easily be created. The organoid is successfully binarily distinguished from
its background.

Functionally it is based on the model of the "fully convolutional network”. It can sep-
arate touching objects of the same class (traditionally a tricky issue in neural networks)
by utilising a weighted loss function where the background labels between touching cells
are worth a greater loss. To mitigate the common issue of limited data availability in
biology, U-net applies elastic deformations to the training data. This is an effective
method of data augmentation and makes the network invariant to such deformations,
which is vital in biomedical imaging. Even slight changes in tissue deformation can
potentially have entirely different causes and effects.
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Figure 3.8: To utilise U-net to create a 3D model, it is necessary to split each organoid
into single 2D files, crop and ideally drift-correct. These single slices can then
be fed to the python script (see the entire code in detail in the appendix B).
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The network is made up of a contracting path (left side of the U; see 3.9) and an
expansive path (right side). The contracting path applies two 3x3 convolutions (un-
padded), each with a ReLU (see fig. 3.10) activation function, to the input image. It is
then down-sampled by a 2x2 max pooling operation with stride 2, and these steps are
repeated, doubling the number of feature channels at each step.
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Figure 3.9: The architechture of U-net, from [11]. The left side shows the contracting
side, a series of downwards convolutions and max pooling. The rightside
essentially retraces the steps through upwards convolution and creates a seg-
mentation map as the output.

On the expansive side, the network takes these same steps again, but in the opposite
direction, as shown in fig. 3.9. The upwards convolution halves the number of feature
channels and is concatenated with the cropped map from the contracting path (grey
arrow). The cropping is essential because there is no padding used, so border pixels get
lost with every convolution (note the dimensions written vertically in grey). The last

layer has a filter of size 1x1 to map each 64-component feature vector to the wanted
number of classes.
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ReLU

Figure 3.10: The ReLU activation function, also known as the rectifier, is defined as the
positive part of its argument: f(z) = max(0,x). It is a computationally
simple function to handle, is scale invariant and offers a better gradient
propagation than other functions [46, 47].

The training process is done using ideally large images to make do for the unpadded
convolutions. The output image will be of reduced dimensions and gets heavily scaled
down from original 2048x2048 images on the input to 256x256 on the output. The
dimension of the training images is even more important than the batch size. For
further processing, the size of the output image isn’t an issue because the outline of the
organoid is already clearly defined. A high stochastic gradient descent (momentum of
0.99) is used so that the update in the current optimization step is determined by a large
number of previously viewed training samples.

For the purpose of this thesis, a data set with 116 two-dimensional images was used.
Through data augmentation in pre-training they were rotated clockwise, anticlockwise
and flipped horizontally and vertically to provide a data set of 580 images. Every image
was segmented manually to provide an accurate ground truth label. Together with 300
labeled images from a previous training run, the data set consisted of 880 individual
images.

The U-net code (see B) was adopted from [48] and was executed in Python. The script
utilises the Keras API on top of the Tensorflow 2 library which simplifies processes such
as pooling, activation functions and layers.
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Figure 3.11: Examples of types of organoid structures used for training with their re-
spective manual segmentation below

To calculate the energy function needed to incrementally minimize the error, U-net
first uses a soft-max function, eqn. 3.1, pixel-by-pixel. It approximately outputs pyx) ~
1 when the feature channel k has the maximum activation ay(x) and py(x) =~ 0 for all
other k. The variable x denotes the pixel position on  C Z2.

o) = exp (ax(x))
PEO) = S p (e ()

Then, at each position x, the cross energy loss function (eqn. 3.2) penalizes the deviation
of py(x) from 1.

(3.1)

E =" w(x)log (prx(x)) (32)

xeN

where [ : Q — {1, ..., K} is the true label of each pixel and w : Q@ — R is the weight map
(eqn. 3.3). d; and d2 denote the distance to the nearest and second nearest boundary
pixels, w, is the weight map to balance class frequencies and wy and o are constants.

(di(x) + dz(X))2>

202

w(x) = we(x) + wo - exp <— (3.3)
There is a higher weight at the border of the segmented objects, so these have a greater
effect on the loss. This leads to a discontinuous, binary segmentation of objects, making
U-net particularly suited to biomedical image segmentation. Every pixel is placed in a
category which turns a classical segmentation issue into a multi-class classification one.
This is a lot more accurate [11]. There is a version of U-net that works directly in 3D
[49], but it is tailored toward single-cell structures.

To evaluate the performance, the training process was run twice on different settings.
On high settings (training T2), the U-net training process ran with a batch size (hyper-
parameter that determines the number of used images per training iteration) of 8, 1000
epochs (number of times the network went through the entire training data set) and 125
steps per epoch. Training T1 was done on much lower settings, with a batch size of 4
and 8 steps per epoch.
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Segmentation evaluation metrics

To analyse the accuracy of the resulting masks, we can use a variety of statistical mea-
sures. The Jaccard index (also known as ”Intersection over Union”) is given by

Area of Overlap  [AN B|
Area of Union  |AU B|

J(A,B) = (3.4)
where A and B denote the masks of the manual and automatic segmentation. The
precision, recall and f-score are statistical binary classification methods and are given by
following equations. They were calculated by a point map on the segmentation masks.

true positive
r= — - (3.5)
true positive + false negative

true positive

_ 3.6
p true positive + false positive (3.6)

2y pP-T
fe=(01+B"%) P (3.7)
The f-score (Dice coefficient) is a the harmonic mean between precision and recall, and
the B gives the balance. The recall is B times as important as the precision in a fg-score.
In table 4.1 they are both given the same weight.

In contrast to the other metrics, the structural similarity index (SSIM) is not pixel-
based. It works by evaluating the luminence, contrast and structure on both images
and comparing those. This is a somewhat more substantial measure for intricate branch
structures [50].

3.3.4 3D representation

Once we have the segmented images from U-net, we can stack them back all together
using the "Images to Stack” utility in ImageJ. By setting the voxel depth in to 0.5 pm
as given by the microscope reading and opening the segmented stack in the 3D viewer,
we can already visualize what the cell structure looks like. However, the manipulation
and analysis options are very rudimentary, and so to perform further analysis we will
export the 3D object as an STL file and import it into Blender.

The goal is to be able to visualize the organoid from all sides, ideally with very few
steps to ensure a quick analysis that keeps up with the high-throughput imaging and
retains specificity. We can import the STL for each timeframe and assign them to
their respective timeline position by going into the object properties and under visibil-
ity” adding a driver to the viewport with the expression frame != float(self.name).
When applied to all objects, every model is assigned to the corresponding frame. This
enables a visualisation of growth in the timeline.

If the models look rough, they can be partially smoothed by enabling the ”Auto
Smooth” option on the object. For rough obvious artifacts, the smoothing brush can be
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used to manually edit them out. This is non-invasive and doesn’t change parameters
such as the surface area or volume. If the segmentation is good enough though, there
shouldn’t be the need for a lot of smoothing. Holes, if any, can be filled by a simple
interpolation of mesh points.

The scaling in blender is by default by a factor of 103, so this was taken into account
when determining metrics such as the surface area and volume of the object. They can
be read from the 3D print menu.

3.3.5 Hard- and software

Below is a list of the software used, including the version.
e Leica Microscope Software Platform LAS X Life Science 3.7.6
e ImageJ 1.53t
e Blender 3.3.1.0, the free and open source 3D creation suite

e Python 3.9.0, running in Visual Studio Code 1.73.1 on Ubuntu 20.04.5 LTS with an
Intel Core™ i9-10900X CPU @ 3.70GHz x20, 64GB DDR4 RAM and two NVIDIA
GeForce RTX 2080Ti RevA graphics cards

o U-net, adapted from [48], utilising Tensorflow and Keras libraries
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4 Results

4.1 Image segmentation performance in 2D

Training T2 (higher settings: batch size of 8, 125 steps per epoch) ran for roughly 120 h.
Each epoch took on average 7.2min with each improving the loss to a final 0.02247. In
comparison, when running the training process T1 with a batch size of 4 and 8 steps
per epoch (which took 26 min on the same system), the loss was 0.06971. Applying
the trained network to 20 images took only roughly 20s, a second per image. Due to
hardware limitations, it wasn’t possible to process the whole z-stack at once, so this was
done in batches of 20.

Figure 4.1 shows the output for a part of organoid A1P5. Because of the large data
set, training T1 was used for this round. Even though parts of the organoid are out
of focus and partially covered by artifacts in the medium, the neural network managed
to segment successfully, also getting details right. It shows that even with low training
settings, a sufficient segmentation can be achieved. With a simple batch thresholding
algorithm applied, the images were then used directly to create a 3D model (see fig. 4.3).

» LT 3 " Py '
S - Wt ‘E:r'
(a) Input slice of A1P5 (b) Segmented output image from U-net

Figure 4.1: Organoid A1P5, segmented with training run T1 (lower settings). The out-
lines are well defined but the contrast is not as pronounced as with T2 (see
below).
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To gain a better overview over the achievable accuracy with the U-net network, differ-
ent morphologies, detailing and imaging conditions were tested and compared to manual
segmentation on a variety of metrics, this time run on the higher settings, T2. Some
examples are depicted in fig. 4.2 and the results are given in table 4.1. On these images
we can clearly see a shading gradient in the output which can be understood as proba-
bility density. It gives the relative likelyhood of a part of the organoid being at a certain
position. Less probable features (for example due to artifacts or lighting) are shaded in
a darker tone. There is also a surprising amount of detail on overlapping branches. The
three-dimensionality can be seen. This is especially clear on the T2 images which show
that for direct analysis of two-dimensional images a more thorough training process is
beneficial.
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(a) Input: Org.1 (b) U-net output (d) Manual mask

(e) Input: Org.2 (f) U-net output (h) Manual mask

\z

1

(i) Input: Org.3 (j) U-net output (k) Mask (1) Manual mask

Figure 4.2: Some more complex organoids were segmented with U-net to test its capa-
bilities, with the high settings of training T2. The second column shows the
output from U-net which is then masked (third column). For comparison, a
manual masking was done, as seen on the right. Running U-net takes about
1s per image, while the manual masking at this level of detail took around

12 min per image in ImageJ. The statistical comparison can be found in table
4.1.
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1

Figure 4.3: Figure 4.2 (b, {, j) enlarged to show the gradient across the branches which
indicates the probability density.
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4 Results

J J

T T+RO 7 " ho SSIM

Organoid Image U-net

0.579 0.762 0.923 0.814 0.865 0.914

0.596 0.81 0.960 0.832 0.892 0.903

0.626 0.817 0912 0.887 0.899 0.899

0.572 0.779 0942 0.820 0.875 0.905

Table 4.1: U-Net quality metrics. J is the Jaccard index (Intersection over Union, IoU),
with T being the comparison with the thresholded U-net segmentation and
RO with the additional Remove Outliers algorithm. p, r, and f; give the
precision, recall and f; score respectively. Metrics from [51]

As is evident from the side-by-side comparison in fig. 4.2, fine details, especially the
tips, aren’t captured as accurately as in the manual segmentation. However, the high
average values of J = 0.78, p = 0.94, » = 0.82 and f; = 0.88 demonstrate a significant
overlap and general pixel-wise matching of features, considering the complexity of the
input images. The SSIM-score of 0.91 shows a high match of luminance, contrast and
structure. Also, the fact that the manual segmentation at this level of detail takes 12 min
longer demonstrates the practicality and versatility of U-net. With a higher resolution,
a greater batch size and more steps per epoch in training, an even higher match can be
achieved.

4.2 Visualisation of 3D model

The three-dimensional model on the other hand allows for a comprehensive analysis. The
model in fig. 4.4 gives a picture of the dimensions, positioning and directional growth
of the branches of organoid A1P5. The organoid is roughly symmetrical, with two main
branches on either side along the main axis, each with a similar diameter (10 um), and
a similar angle between them (51° and 56°). It grows mainly in one plane, but the front
branch spouted from the lower half of the structure, and also the two branches at the
far end don’t emerge from the planar equator of the organoid. The branches are overall
cylindrical with a diameter of around 50 pm to 60 um, but also relatively pointy at the
tips. This indicates the points where the branches are elongated during the extension
phase.
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100 microns

200 microns

Figure 4.4: 3D representation of organoid A1P5 at the t = 0. Note the branching along
the main axis of extension.

While A1P5 is a specimen that grows primarily along its longitudinal axis and shows
very few branching events, D5P2 (fig. 4.7) is a lot more finely divided. The branches
are thinner (about 30 pm across on average), and instead of growing longitudinally, it
focuses on sprouting in several directions, preferring a higher number of branches over
thickness. While a main axis of elongation can be recognised, it isn’t as pronounced as
with A1P5.

An interesting aspect are the bulges at the inception points of the branches in D5P2
(fig. 4.7). They appear even before the branches start emerging, indicating a build up of
cells to prepare for the elongation (points ¢, d and e). At the end of the main axis, the
point a is a center point for branching in seven directions, while point b does similarly
on the other side of the main axis of elongation (blue line).
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500 microns

Figure 4.5: 3D representation of organoid D5P2 at ¢t = 0, note how it is morphologically
different to A1P5. It shows much more branching and doesn’t only grow
longitudinally but aims to cover a large area. The blue line shows the main
axis and the red circles show bulges that form at division points. They
indicate a build-up of cells in the area, preparing for protrusions in the spot.
Points a and b are the main sprouting points at both ends of the main axis,
while ¢, d and e are bulges that have formed before the beginning of branch
growth.
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Figure 4.6: 3D models of A1P5 every 10h. t=0h is normalised to the beginning of day 5.
It shows the growth over a period of 30h. The branches gain in girth early
on in development, and don’t change much later on. New branching only
occurs heavily around the 20 h mark from various points along the branches.
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400 microns

Figure 4.7: The growth of A1P5 every 10h. Note the longitudinal growth on the main
axis at the beginning, and then focusing more on extending the branches

4.3 Volumetric analysis of 3D model

In combination with two more organoid models shown in fig. 3.2, the volume can be
plotted over time (fig. 4.8). The growth is normalised to the organoid’s size at hour 30
from day five.

The branched organoid (D5P2) displays a completely different growth pattern to the
others which all grow longitudinally. It starts off at a much lower relative size (26.8 %)
than the other three (60.4% on average). It grows exceptionally fast, at a rate of
2.62%h~! (vs. 1.28%h~!) until hour 23, from where on it exhibits a similar behaviour
to the longitudinal growing ones.
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(b) Volume normalised to the organoids size at ¢t = 30 h.

Figure 4.8: Volumetric growth of the inspected organoids from fig. 3.2. The extremely
branched D5P2 has the fastest growth, which is evident especially in (b),
with a growth of 2.62 % h~!. The more linearly structured organoids exhibit
a slower and more uniform growth (A1P5, A2P2, A1P4).
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(a) Absolute growth of the surface area over time. Organoid D5P2 has an extremely fast
growth, whereas A2P2 grows linearly and relatively slowly.
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(b) Relative growth of the organoid surface area.

Figure 4.9: Surface area development over a period of > 30h. The differences in growth
speed are less evident but still noticeable. There are more fluctuations in the
data due to inconsistencies in the surface mesh of the models.
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The pattern for the surface area is less evident, but still noticeable. Due to the
inconsistencies in the mesh creation, there are fluctuations in the surface area, especially
around hours 23 to 30, but the overall tendencies are similar to the volumetric growth.
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5 Discussion

The approach of using the machine-learning model U-net to segment organoids proved
successful. Large data sets were effectively masked and were highly similar to their
corresponding manual segmentation. This took 12 minutes per frame instead of the one
second for U-net. The processing time can even be sped up with improved hardware.
Additional local processing power is expensive, so cloud-based solutions could aid in
increasing the speed and accuracy.

The difficulty in the segmentation with U-net was having a large, pre-processed data
set. The training images had to be labeled (manually segmented), which was a lengthy
process, but fortunately only has to be done once. The data augmentation through
rotation and mirroring helped in increasing the data set size, other image transformations
could have been used as well.

A larger data set with more differentiated organoid morphology would have made the
network more robust and the results more substantial. A method of creating a larger data
set without changing the microscopy process is through voxelization. The 3D models
could be broken back down into a theoretically infinite number of 2D images and used
for data augmentation of the training set. This would provide more exact results on the
following training runs. The code for voxelization is easy to run and is given here:

pip install stl-to-voxel
stltovoxel 3D.stl 2D_images.png --voxel-size 1 --resolution 256

Program 1: Simple voxelization utility in python using the ”stl-to-voxel” package from
[52]. It converts an STL-file to a specified number of individual, masked PNGs. These
can be used for data augmentation of U-net, for example.

To increase the variety of organoid shapes would require imaging more cell cultures.
This is not straightforward to do, as it requires more primary tissue from clinical inter-
ventions. The cell cultures also go through a lengthy process of cultivation and medium
changes to create the right conditions, so an immediate increase in available organoids
to image is not always possible.

In addition to three-dimensional data sets, images of similar cell structures in 2D
cultures could also make the network more robust and exact in its segmentation. Adding
more "difficult” images, either with artifacts, contrast issues or overlapping structures
would also bolster U-net for suboptimal segmentation conditions. This would also make
the method more applicable to more conventional setups and different use cases, too. For
the segmentation in this thesis, the z-stacks had to be carefully prepared and selected
first.
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The creation of the 3D model required an accurate segmentation. Any artifacts result
in an uneven and incomplete mesh, which falsifies volumetric and surface area readings.
Smoothing algorithms make the model more presentable without changing the data, but
they can only be applied to an already complete mesh.

With regard to the growth patterns of organoids, it was found that the branched
organoid D5P2 grew significantly faster than its less branched counterparts. It would
have been beneficial to compare more morphologically similar organoids. This would
have required a larger data set. For the analysis in this thesis, four individual, three-
dimensional organoids were used, three of which had a similar morphology and growth
behaviour. While this confirmed the consistency in growth of longitudinal growing
organoids, a more varied data set would have provided more insight into the differences
of growth patterns between morphologies. More complex structures are more difficult
to segment, however, and would have required a better trained network to capture all
branching details.

The imaging time of the data set was also limited to under three days, preventing
a comprehensive analysis of all growth phases. The difference in growth speed of the
branched organoid could thus also be attributed to a different onset of the extension
phase in each typology of organoid. It would be interesting to do a similar analysis,
but from initial growth to the lumen formation phase, on multiple, morphologically
diverse organoids. This would enable an exhaustive investigation of the actual differences
between organoid types.

The bulges that form at branching points are particularly interesting. On a cellular
level, they could provide more insights into the reason organoids branch out when they
do, what physical and genetic mechanisms underly the branching process and how it
could be controlled.

38



6 Conclusion and Outlook

This thesis has demonstrated the practicality of the CNN-based U-net for segmentation
of three-dimensional cell cultures. Large data sets were processed quickly and accu-
rately, from the initial z-stacks to accurately masked images. The 3D models created
from the segmentation proved essential in the analysis of volumetric data and branching
behaviour. It was shown that different organoid morphologies exhibit different growth
profiles, and branching events are preceded by a build up of cells. Further quantitative
analyses are possible from the models.

As a consequence, the effect of drug treatments on growth behaviour could be ef-
fectively analysed with this method. Applying drugs to the organoids, imaging the
growth before and after and using these methods to create a 3D model would provide
researchers with information on the effect of the drugs on organoid growth behaviour.
The knowledge gained could contribute to the understanding of pathologies and their
treatment.

Additionally, the models can be used for 3D printing which would be useful for demon-
stration purposes and even doctor-to-patient interactions. Furthermore, in an increas-
ingly digitalized world, it paves the path for augmented reality or virtual reality models
which can be stored on a cloud and exchanged between members of a team around the
world in near real-time.

It is to be expected that these methods would also work for similar objects and can
be used for parametrization in fundamental research beyond the field of biology.
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Appendix A

Datasets

2207119591 Day 5-8_Calyculin_Plate_2
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Figure A.1: Training dataset montage 1
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Figure A.2: Training dataset montage 2

Figure A.3: Training dataset montage 3
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Appendix B
Code

Model:

import numpy as np
import os
import skimage.io as io

import

import numpy as np

kernel_initializer

kernel_initializer =

conv2 = Conv2D (128,

kernel_initializer =

pool2
conv3

Conv2D (256,

kernel_initializer =

conv3 = Conv2D (256,

kernel_initializer =

Conv2D (512,

kernel_initializer =

convd = Conv2D (512,

kernel_initializer =

pooléd

drop4 = Dropout (0.5)
MaxPooling2D (pool_size=(2, 2)) (drop4)

convb = Conv2D (1024,

kernel_initializer =

convb = Conv2D (1024,

kernel_initializer =

drop5 = Dropout (0.5)

skimage.transform as trans

’he_normal’) (convil)

pooll = MaxPooling2D(pool_size=(2, 2)) (convl)
conv2 = Conv2D (128,

convl = Conv2D (64, 3, activation = ’relu’, padding =

3, activation = ’relu’, padding

’he_normal’) (pooll)

3, activation = ’relu’, padding

’he_normal’) (conv2)

MaxPooling2D (pool_size=(2, 2)) (conv2)

3, activation = ’relu’, padding

’he_normal’) (pool2)

3, activation = ’relu’, padding

’he_normal’) (conv3)

pool3 = MaxPooling2D(pool_size=(2, 2)) (conv3)
convé4

3, activation = ’relu’, padding

’he_normal’) (pool3)

3, activation = ’relu’, padding

’he_normal’) (convéd)
(conv4d)

3, activation = ’relu’,
’he_normal’) (pool4d)
3, activation = ’relu’,

’he_normal’) (convb)
(convb)
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padding

padding

same’

same’

same’

same’

same’

same’

’same

’same

from keras.models import *

from keras.layers import *

from keras.optimizers import *

from keras.callbacks import ModelCheckpoint, LearningRateScheduler

from keras import backend as keras

; def unet(pretrained_weights = None,input_size = (256,256,1)):
inputs = Input(input_size)
convl = Conv2D (64, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (inputs)
’same’,

bl

bl
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Appendix B Code

up6 = Conv2D (512, 2, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (UpSampling2D(size = (2,2)) (drop5))
merge6 = concatenate ([drop4,up6], axis = 3)

conv6é = Conv2D (512, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (merge6)

convé = Conv2D (512, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (conv6)

up7 = Conv2D (256, 2, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (UpSampling2D(size = (2,2)) (conv6))
merge7 = concatenate([conv3,up7], axis = 3)

conv7 = Conv2D (256, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (merge7)

conv7 = Conv2D (256, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (conv7)

up8 = Conv2D (128, 2, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (UpSampling2D(size = (2,2)) (conv7))
merge8 = concatenate ([conv2,up8], axis = 3)

conv8 = Conv2D (128, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (merge8)

conv8 = Conv2D (128, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (conv8)

up9 = Conv2D(64, 2, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (UpSampling2D(size = (2,2)) (conv8))
merge9 = concatenate([convl,up9], axis = 3)

conv9 = Conv2D(64, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (merge9)

conv9 = Conv2D(64, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (conv9)

conv9 = Conv2D(2, 3, activation = ’relu’, padding = ’same’,
kernel_initializer = ’he_normal’) (conv9)

convli0 = Conv2D(1, 1, activation = ’sigmoid’) (conv9)

model = Model (inputs, conv10)

model.compile (optimizer = Adam(lr = 1le-4), loss = °’
binary_crossentropy’, metrics = [’accuracy’])

#model . summary ()

if (pretrained_weights):
model.load_weights(pretrained_weights)

return model
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Data:

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator
import numpy as np

import os

import glob

import skimage.io as io

import skimage.transform as trans

from skimage.util import img_as_ubyte

Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road = [128,64,128]
Pavement = [60,40,222]

; Tree = [128,128,0]

SignSymbol = [192,128,128]
Fence = [64,64,128]

Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]

COLOR_DICT = np.array ([Sky, Building, Pole, Road, Pavement,
Tree, SignSymbol, Fence, Car, Pedestrian,
Bicyclist, Unlabelled])

def adjustData(img,mask,flag _multi_class ,num_class):
if (flag_multi_class):
img = img / 255
mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range (num_class):
#for one pixel in the image, find the class in mask and
convert it into one-hot vector

#index = np.where(mask == i)
#index_mask = (index[0], index[1],index[2] ,np.zeros(len(index
[0]) ,dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],
index [1] ,np.zeros (len(index [0]) ,dtype = np.int64) + i)
#new_mask [index_mask] = 1
new_mask[mask == i,i] = 1
new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape

[1]*new_mask.shape [2] ,new_mask.shape[3])) if flag multi_class else np.
reshape (new_mask , (new_mask.shape [0]*new_mask.shape[1] ,new_mask.shape
[21))

mask = new_mask
elif (np.max (img) > 1):

img = img / 255

mask = mask /255

mask [mask > 0.5] = 1

mask [mask <= 0.5] = 0
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16 return (img,mask)

50 def trainGenerator (batch_size ,train_path,image_folder ,mask_folder,

aug_dict ,image_color_mode = '"grayscale",

51 mask_color_mode = '"grayscale",image_save_prefix = "
image" ,mask_save_prefix = "mask",

52 flag_multi_class = False,num_class = 2,save_to_dir =

None ,target_size = (256,256) ,seed = 1):

53 PR

54 can generate image and mask at the same time

55 use the same seed for image_datagen and mask_datagen to ensure the
transformation for image and mask is the same

56 if you want to visualize the results of generator, set save_to_dir =
"your path"

57 )0

58 image_datagen = ImageDataGenerator (*x*aug_dict)

59 mask_datagen = ImageDataGenerator (**aug_dict)

60 image_generator = image_datagen.flow_from_directory(

61 train_path,

62 classes = [image_folder],

63 class_mode = None,

64 color_mode = image_color_mode,

65 target_size = target_size,

66 batch_size = batch_size,

67 save_to_dir = save_to_dir,

68 save_prefix = image_save_prefix,

69 seed = seed)

70 mask_generator = mask_datagen.flow_from_directory (

71 train_path,

72 classes = [mask_folder],

73 class_mode = None,

74 color_mode = mask_color_mode,

75 target_size = target_size,

76 batch_size = batch_size,

77 save_to_dir = save_to_dir,

78 save_prefix = mask_save_prefix,

79 seed = seed)

80 train_generator = zip(image_generator , mask_generator)

81 for (img,mask) in train_generator:

82 img ,mask = adjustData(img,mask,flag_multi_class ,num_class)

83 yield (img,mask)

84

85

86

87 def testGenerator (test_path,num_image = 31,target_size = (256,256),
flag_multi_class = False,as_gray = True):

88 for i in range (num_image) :

89 img = io.imread(os.path.join(test_path,"’%d.jpg"%i),as_gray =
as_gray)

90 #img = io.imread(os.path.join(test_path, "Jd.png" % i), as_gray=
as_gray)

91 img = img / 255
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Appendix B Code

img = trans.resize(img,target_size)

img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class)
else img

img = np.reshape(img,(1,)+img.shape)

yield img
geneTrainNpy (image_path ,mask_path,flag_multi_class = False,num_class
= 2,image_prefix = "image",mask_prefix = "mask",image_as_gray = True,
mask_as_gray = True):

image_name_arr = glob.glob(os.path.join(image_path,"/s*.jpg"%
image_prefix))

#image_name_arr = glob.glob(os.path.join(image_path, "V%s*.png" %
image_prefix))

image_arr = []
mask_arr = []
for index,item in enumerate (image_name_arr):
img = io.imread(item,as_gray = image_as_gray)
img = np.reshape(img,img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path,mask_path).replace(
image_prefix ,mask_prefix),as_gray = mask_as_gray)
mask = np.reshape (mask,mask.shape + (1,)) if mask_as_gray else
mask
img ,mask = adjustData(img,mask,flag_multi_class ,num_class)

image_arr.append (img)

mask_arr.append (mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)
return image_arr ,mask_arr

labelVisualize (num_class,color_dict ,img):
img = imgl[:,:,0] if len(img.shape) == 3 else img
img_out = np.zeros(img.shape + (3,))
for i in range (num_class):
img_out [img == i,:] = color_dict[i]
return img_out / 255

saveResult (save_path ,npyfile,flag_multi_class = False,num_class = 2):
for i,item in enumerate(npyfile):

img = labelVisualize (num_class ,COLOR_DICT,item) if
flag_multi_class else iteml[:,:,0]

#io.imsave (os.path. join(save_path,"%d_predict.png"%i),img)

io.imsave (os.path. join(save_path,"/d_predict. jpg"%i),img_as_ubyte

(img))

#img_out = img_as_ubyte (img_out)
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Main:

from model import *
from data import *
#from keras.utils import multi_gpu_model

def importing(x):
from keras.utils import multi_gpu_model

os.environ["CUDA_VISIBLE_DEVICES"] = "O"
print (os.environ["CUDA_VISIBLE_DEVICES"])

data_gen_args = dict(rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode=’nearest’)

myGene = trainGenerator (2,’data/membrane/train’,’image’,’label’,
data_gen_args ,save_to_dir = None)

model = unet ()

model_checkpoint = ModelCheckpoint (’unet_membrane.hdf5’, monitor=’loss’,

verbose=1, save_best_only=True)
model.fit_generator (myGene ,steps_per_epoch=2,epochs=1000, callbacks=[
model_checkpoint], verbose=1)

testGene = testGenerator ("data/membrane/test")

results = model.predict_generator (testGene,verbose=1,steps=20)
saveResult ("data/membrane/test",results)
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