

Romantic Chaos

A study of the emergence of unpredictability in relationships

Sándor Battaglini-Fischer, Yehui He, Thomas Norton, Victor Piaskowski

Background/Motivation

- Research question: Under what conditions does complexity emerge in romantic relationships?
- Chaos: "When the present determines the future, but the approximate present does not approximately determine the future".
 - it must be sensitive to initial conditions,
 - it must be topologically transitive,
 - it must have dense periodic orbits
- Hypothesis: Romantic complexity requires:
 - A particular <u>set of character traits</u> (parameters) insecurity, wrong expectations
 - External influences (environmental noise or inspiration)
 - <u>Third parties displaying interest</u> in one of the partners (Higher dimensional dynamical system, network model)

Outline

- 1. Base Model and Assumptions
- 2. Emergence of Chaos through Environmental Influence
 - Environmental Stress
 - Extra Emotional Dimensions
- 3. Unpredictability in triangular relationships
- 4. Love as a 6D dynamical system
- 5. Reduction to a 4D dynamical system and a basic network model

Base Model and Assumptions

$$f_i = R_i^L + R_i^A - O_i$$

 R_i^L Reaction to Love

 R_i^A Reaction to Appeal

 O_i Oblivion term

Synergic

Platonic

$$\frac{\partial R_i^L}{\partial x_i} \ge 0$$
 $\frac{\partial R_i^A}{\partial x_i} \ge 0$ $\frac{\partial R_i^L}{\partial x_i} \le 0$ $\frac{\partial R_i^A}{\partial x_i} \le 0$

Secure

Insecure

$$\frac{\partial R_i^L}{\partial x_j} \ge 0 \quad \frac{\partial R_i^A}{\partial x_j} \ge 0 \quad \frac{\partial R_i^L}{\partial x_j} < 0 \quad \frac{\partial R_i^A}{\partial x_j} < 0$$

Biased

Unbiased

$$R_i^L(x_i, x_j), R_i^A(A_j, x_i)$$

Example: Love Dynamics of a couple

Romeo: Synergic lover

Juliet: Insecure lover

$$\dot{R} = aR + bJ$$

$$\dot{J} = cR + dJ$$

$$\dot{R} = aJ$$

$$\dot{J} = -bR$$

Different cases

<u>Identically insecure lovers</u>

$$\dot{R} = aR + bJ$$

$$\dot{J} = bR + aJ$$

$$a < 0, b > 0$$

Fire and Ice (Do opposites attract?)

$$\dot{R} = aR + bJ$$

$$\dot{J} = -bR - aJ$$

Romeo the Robot

$$\dot{R} = 0$$

$$\dot{J} = aR + bJ$$

A more complex example: "Gone with the Wind" (1939)

$$\dot{R} = -R + A_S + kSe^{-S}$$

$$\dot{S} = -S + A_R + kRe^{-R}$$

External stress

$$\dot{x}_{1} = -\alpha_{1}x_{1} + R_{1}^{L}(x_{2}) + (1 + b_{1}^{A}B_{1}^{A}(x_{1}))\gamma_{1}A_{2}$$

$$\dot{x}_{2} = -\alpha_{2}x_{2} + R_{2}^{L}(x_{1}) + (1 + b_{2}^{A}B_{2}^{A}(x_{2}))\gamma_{2}A_{1}, \qquad A_{1}(t) = \bar{A}_{1}(1 + \varepsilon\sin\omega t) \quad 0 \le \varepsilon \le 1$$

$$R_1^L(x_2) = \beta_1 k_1 x_2 \exp\left(-\left(k_1 x_2\right)^{n_1}\right) \quad R_2^L(x_1) = \beta_2 k_2 x_1 \exp\left(-\left(k_2 x_1\right)^{n_2}\right) B_1^A(x_1) = x_1^{2m_1} / \left(x_1^{2m_1} + \sigma_1^{2m_1}\right) \quad B_2^A(x_2) = x_2^{2m_2} / \left(x_2^{2m_2} + \sigma_2^{2m_2}\right).$$

External inspiration

$$\dot{x}_1 = -\alpha_1 x_1 + R_1^L(x_2) + \gamma_1 A_2$$

$$\dot{x}_2 = -\alpha_2 x_2 + R_2^L(x_1) + \gamma_2 A_1 \frac{1}{1 + \delta z_2}$$

$$\dot{z}_2 = \varepsilon(\mu x_2 - z_2),$$

$$R_1^L(x_2) = \beta_1 x_2 (1 - (x_2/x_2^*)^2).$$

$$R_2^L(x_1) = \beta_2 x_1.$$

Laura de Sade

Francesco Petrarch

Triangular Relationships (1/3)

$$\begin{split} \frac{d}{dt}x_{12} &= -\alpha_1 e^{\epsilon(x_{13} - x_{12})} x_{12} + R_{12}^L(x_{21}, \tau_{I_{12}}, \sigma_{L_{12}}, \sigma_{I_{12}}, \beta_{12}) + (1 + S(x_{12}, \tau_S, \sigma_S, s)) \gamma_1 A_2, \\ \frac{d}{dt}x_{13} &= -\alpha_1 e^{\epsilon(x_{12} - x_{13})} x_{13} + \beta_{13} x_{31} + (1 + S(x_{13}, \tau_S, \sigma_S, s)) \gamma_1 A_3, \\ \frac{d}{dt}x_{21} &= -\alpha_2 x_{21} + \beta_{21} x_{12} e^{\delta(x_{13} - x_{12})} + (1 - P(x_{21}, \tau_P, p, \sigma_P)) \gamma_2 A_1, \\ \frac{d}{dt}x_{31} &= -\alpha_3 x_{31} + R_{31}^L(x_{13}, \tau_{I_{31}}, \beta_{31}, \sigma_{L_{31}}, \sigma_{I_{31}}) e^{\delta(x_{13} - x_{12})} + \gamma_3 A_1. \end{split}$$

"Jules et Jim" - Henri-Pierre Roché (1953) "Jules & Jim" - François Truffaut (1962)

Partner changes: 7

Triangular Relationships (2/3)

Result:

The outcome doesn't depend on the initial conditions (feelings), but much more on the intrinsic characteristics of the partners!

Triangular Relationships (3/3)

Rinaldi, S., Rossa, F. D., Dercole, F., Gragnani, A., & Landi, P. (2015). Modeling Love Dynamics: Vol. Volume 89. WORLD SCIENTIFIC. https://doi.org/10.1142/9656

Love as a 6D dynamical system -Sternberg's "Triangular Theory of Love"

Reduction to a 4D Dynamical System – Network Model

- Assumptions made:
 - Omission of the commitment dimension for simplicity
 - \circ Small fully connected network (n=10, n(n-1)/2 number of edges!)
 - Everyone knows (and is "in love" with) one another
 - Unintentionally models bi/gay dating show where everyone competes for other people's attention
 - Option to have everyone aware of each other's parameters (normalizing parameters)
 -> small changes in network cause other people to adapt how they perceive other people
 - Network starts out deterministically random "love at first sight" (seed = 0 used)

ахх 🔾 ————	-0.90	axy —	-0.07	bxx	-0.92	bxy	8.0
аух —	-0.46	ауу	-0.22	byx 🔾	-0.99	byy -	-0.7
схх —————	0.74	сху	0.03	dxx ————	0.46	dxy -	-0.7
сух —	-0.34	суу	0.68	dyx	0.64	dyy —	-0.5
fxy	-0.96	fyx	0.61	gxy —	-0.66	дух ————	0.5
xi0	0.00	yi0	0.00	хр0	0.00	ур0	0.0

Program started from beginning with random parameters axx=[0.69, -0.38, -1, 0.27, -0.11, -0.7]bxx = [-0.16, 0.8, 0.74, 0.43, -0.68, 0.97]

Normalize params, sum=0, axx =[0.17, -0.11, -0.27, 0.15, 0.20, 0.06, 0.03] bxx = [0.00, 0.24, 0.22, 0.15, -0.13, 0.28]

axx=0.75, bxx=0.5, and renormalize, small change axx=[0.57,-0.10,-0.24, 0.04,-0.04,-0.17] bxx=[0.45, 0.21, 0.19, 0.12,-0.13, 0.24]

Final remarks: Shortcomings of the Model

- Doesn't account for individual differences:
 - sex differences,
 - Psychological differences,
 - Stochastic effects, etc
- For the 4D System:
 - When normalizing the parameters, the simulation is "restarting" from the beginning
 - The system isn't chaotic, maybe different model needed